Water use and carbon exchange of red oak- and eastern hemlock-dominated forests in the northeastern USA: implications for ecosystem-level effects of hemlock woolly adelgid.
نویسندگان
چکیده
Water use and carbon exchange of a red oak-dominated (Quercus rubra L.) forest and an eastern hemlock-dominated (Tsuga canadensis L.) forest, each located within the Harvard Forest in north-central Massachusetts, were measured for 2 years by the eddy flux method. Water use by the red oak forest reached 4 mm day(-1), compared to a maximum of 2 mm day(-1) by the eastern hemlock forest. Maximal carbon (C) uptake rate was also higher in the red oak forest than in the eastern hemlock forest (about 25 versus 15 micromol m(-2) s(-1)). Sap flux measurements indicated that transpiration of red oak, and also of black birch (Betula lenta L.), which frequently replaces eastern hemlock killed by hemlock woolly adelgid (Adelges tsugae Annand.), were almost twice that of eastern hemlock. Despite the difference between species in maximum summertime C assimilation rate, annual C storage of the eastern hemlock forest almost equaled that of the red oak forest because of net C uptake by eastern hemlock during unusually warm fall and spring weather, and a near-zero C balance during the winter. Thus, the effect on C storage of replacing eastern hemlock forest with a forest dominated by deciduous species is unclear. Carbon storage by eastern hemlock forests during fall, winter and spring is likely to increase in the event of climate warming, although this may be offset by C loss during hotter summers. Our results indicate that, although forest water use will decrease immediately following eastern hemlock mortality due to the hemlock woolly adelgid, the replacement of eastern hemlock by deciduous species such as red oak will likely increase summertime water use over current rates in areas where hemlock is a major forest species.
منابع مشابه
Oak seedling growth and ectomycorrhizal colonization are less in eastern hemlock stands infested with hemlock woolly adelgid than in adjacent oak stands.
Invasive, non-indigenous, phytophagous insects have caused widespread declines in several dominant tree species. The decline in dominant tree species may lead to cascading effects on other tree and microbial species and their interactions, affecting forest recovery following the decline. In the eastern USA, eastern hemlock (Tsuga canadensis (L.) Carr) is declining because of infestation by the ...
متن کاملCanopy Vegetation Influences Ant (Hymenoptera: Formicidae) Communities in Headwater Stream Riparian Zones of Central Appalachia
In the eastern United States, eastern hemlock Tusga canadensis (L.) Carriere forests are threatened by the invasive hemlock woolly adelgid, Adelges tsugae, a pest that is causing widespread hemlock mortality. Eastern hemlock is an essential component of forested communities. Adelgid-induced hemlock mortality is causing a shift in forest composition and structure, altering ecosystem function and...
متن کاملPredicting Long - Term Forest Development Following Hemlock Mortality
The hemlock woolly adelgid (Adelges tsugae Annand.), an introduced pest specializing on eastern hemlock (Tsuga canadensis (L.) Carr.), threatens to cause widespread hemlock mortality in New England forests. In this study, we used a stem-based model of forest dynamics (SORTIE) to predict forest development in a northeastern forest both with and without eastern hemlock. In all simulations, forest...
متن کاملResponse of Red-Backed Salamanders (Plethodon Cinereus) to Changes in Hemlock Forest Soil Driven by Invasive Hemlock Woolly Adelgid (Adelges Tsugae)
Hemlock forests of the northeastern United States are declining due to the invasive hemlock woolly adelgid (HWA) (Adelges tsugae). Hardwood species replace these forests, which affects soil properties that may influence other communities, such as red-backed salamanders (red-backs) (Plethodon cinereus). This study examined the effects of HWA invasion on soil properties and how this affects red-b...
متن کاملEastern Hemlock Decline in Riparian Areas from Maine to Alabama
Eastern hemlock (Tsuga canadensis) in the Appalachian mountain range is threatened by the introduced hemlock woolly adelgid (Adelges tsugae). Potential impacts on riparian systems are great because of eastern hemlock’s role as a foundation species that influences site soil, vegetation, and stream characteristics. We installed permanent research sites at 49 locations in riparian areas, from Main...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Tree physiology
دوره 28 4 شماره
صفحات -
تاریخ انتشار 2008